MAC 1105 Test 3: Quadratics, Radicals, and Inverses

Name:

November 4, 2013

Show work for partial credit.

1. Pair these functions with their graphs.

2. Tell if each function is one to one.

(b)
(c) $f(x)=3 x+2$
3. Given $f(x)=x-3$, which of these is true?
(a) $f^{-1}(x)=\frac{1}{x}-\frac{1}{3}$
(b) $f^{-1}(x)=\frac{1}{x-3}$
(c) $f^{-1}(x)=x+3$
(d) $f^{-1}(x)=\frac{x}{3}$
4. The C-9 jet does parabolic manouvers to simulate reduced gravity. We can use the function $A(t)=$ $-4.9 t^{2}+87.2 t+9144$, where t is time in seconds and A is altitude in meters. At what time is the jet at its highest point?
(a) 3.45 s
(b) 5.82 s
(c) 8.90 s
(d) 11.46 s
5. What kind of solutions does $2 k^{2}-5 k+7=-9$ have?
(a) one real solution
(b) two imaginary solutions
(c) two real solutions
6. The function

$$
S(L)=2 \pi \sqrt{\frac{L}{32}}
$$

represents the swing of a pendulum, where L is the length of the pendulum in feet and S is the time in seconds for the pendulum to do a full swing (back and forth). How long must a pendulum be to make one full swing in 2.5 seconds?
(a) 5.1 feet
(b) 7.7 feet
(c) 12.7 feet
(d) 25 feet
7. When Kieran solves $\sqrt{x+4}=-x+2$, they get $x=0$ and $x=5$. What should they do now?
(a) Keep both solutions
(b) Eliminate $x=0$
(c) Eliminate $x=5$
8. Are $f(x)=\sqrt[3]{x-2}$ and $g(x)=(x+2)^{3}$ inverses?
(a) Yes
(b) No
9. $h(x)=x^{2}-2 ; r(x)=-x-4$. Find $h(r(3))$.
(a) -8
(b) -11
(c) 25
(d) 47
10. The profit a coat manufacturer makes each day is modeled by $P(x)=-x^{2}+120 x-2000$, where P is the profit and x is the price of each coat sold. For what values of x does the company make a profit?
(a) $x \in[0,20] \cup[100, \infty)$
(b) $x \in[20,100]$
(c) $x \in(20,100)$
(d) $x \in[0,20) \cup(100, \infty)$

